Functional equivalency between Otx2 and Otx1 in development of the rostral head.
نویسندگان
چکیده
Mice have two Otx genes, Otx1 and Otx2. Prior to gastrulation, Otx2 is expressed in the epiblast and visceral endoderm. As the primitive streak forms, Otx2 expression is restricted to the anterior parts of all three germ layers. Otx1 expression begins at the 1 to 3 somite stage in the anterior neuroectoderm. Otx2 is also expressed in cephalic mesenchyme. Otx2 homozygous mutants fail to develop structures anterior to rhombomere 3 (r3), and Otx2 heterozygotes exhibit craniofacial defects. Otx1 homozygous mutants do not show apparent defects in early brain development. In Otx1 and Otx2 double heterozygotes, rostral neuroectoderm is induced normally, but development of the mes/diencephalic domain is impaired starting at around the 3 to 6 somite stage, suggesting cooperative interactions between the two genes in brain regionalization. To determine whether Otx1 and Otx2 genes are functionally equivalent, we generated knock-in mice in which Otx2 was replaced by Otx1. In homozygous mutants, gastrulation occurred normally, and rostral neuroectoderm was induced at 7.5 days postcoitus (7.5 dpc), but the rostral brain failed to develop. Anterior structures such as eyes and the anterior neural ridge were lost by 8.5 dpc, but the isthmus and r1 and r2 were formed. In regionalization of the rostral neuroectoderm, the cooperative interaction of Otx2 with Otx1 revealed by the phenotype of Otx2 and Otx1 double heterozygotes was substitutable by Otx1. The otocephalic phenotype indicative of Otx2 haploinsufficiency was also largely restored by knocked-in Otx1. Thus most Otx2 functions were replaceable by Otx1, but the requirement for Otx2 in the anterior neuroectoderm prior to onset of Otx1 expression was not. These data indicate that Otx2 may have evolved new functions required for establishment of anterior neuroectoderm that Otx1 cannot perform.
منابع مشابه
Otx1 and Otx2 activities are required for the normal development of the mouse inner ear.
The Otx1 and Otx2 genes are two murine orthologues of the Orthodenticle (Otd) gene in Drosophila. In the developing mouse embryo, both Otx genes are expressed in the rostral head region and in certain sense organs such as the inner ear. Previous studies have shown that mice lacking Otx1 display abnormal patterning of the brain, whereas embryos lacking Otx2 develop without heads. In this study, ...
متن کاملVisceral endoderm-restricted translation of Otx1 mediates recovery of Otx2 requirements for specification of anterior neural plate and normal gastrulation.
Otx1 and Otx2, two murine homologs of the Drosophila orthodenticle (otd) gene, contribute to brain morphogenesis. In particular Otx1 null mice are viable and show spontaneous epileptic seizures and abnormalities affecting the dorsal telencephalic cortex. Otx2 null mice die early in development and fail in specification of the rostral neuroectoderm and proper gastrulation. In order to determine ...
متن کاملCooperation between Otx1 and Otx2 genes in developmental patterning of rostral brain
Otx1 and Otx2 genes are mouse cognates of a Drosophila head gap gene orthodenticle. The homozygous mutants have previously indicated that Otx2 is essential to development of structures anterior to rhombomere 3, probably reflecting its expression around the early primitive streak stage. Otx2 mutation also exhibits craniofacial defects by haplo-insufficiency. Affected structures correspond to the...
متن کاملThe role of Otx and Otp genes in brain development.
Over the last ten years, many genes involved in the induction, specification and regionalization of the brain have been identified and characterized at the functional level through a series of animal models. Among these genes, both Otx1 and Otx2, two murine homologues of the Drosophila orthodenticle (otd) gene which encode transcription factors, play a pivotal role in the morphogenesis of the r...
متن کاملRegionalisation of anterior neuroectoderm and its competence in responding to forebrain and midbrain inducing activities depend on mutual antagonism between OTX2 and GBX2.
The anterior neural ridge (ANR), and the isthmic organiser (IsO) represent two signalling centres possessing organising properties necessary for forebrain (ANR) as well as midbrain and rostral hindbrain (IsO) development. An important mediator of ANR and IsO organising property is the signalling molecule FGF8. Previous work has indicated that correct positioning of the IsO and Fgf8 expression i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 126 4 شماره
صفحات -
تاریخ انتشار 1999